Monoclonal Antibody to CD10
PerCP-Cy™5.5 conjugated (100 tests)

Clone: MEM-78
Isotype: Mouse IgG1
Specificity: The antibody MEM-78 reacts with CD10 antigen (CALLA - Common acute lymphatic leukemia antigen), a 100 kDa type II integral membrane protein. HLDA IV; WS Code B 506
HLDA V; WS Code B CD10.4
Regulatory Status: RUO
Immunogen: NALM-6 human pre-B cell line
Species Reactivity: Human
Preparation: The purified antibody is conjugated with tandem dye PerCP-Cy™5.5 under optimum conditions. The conjugate is purified by size-exclusion chromatography and adjusted for direct use. No reconstitution is necessary.
Storage Buffer: The reagent is provided in stabilizing phosphate buffered saline (PBS) solution containing 15mM sodium azide.
Storage / Stability: Store in the dark at 2-8°C. Do not freeze. Avoid prolonged exposure to light. Do not use after expiration date stamped on vial label.
Usage: The reagent is designed for Flow Cytometry analysis of human blood cells using 4 µl reagent / 100 µl of whole blood or 10^6 cells in a suspension. The content of a vial (0.4 ml) is sufficient for 100 tests.
Expiration: See vial label
Lot Number: See vial label
Background: CD10 (neutral endopeptidase, NEP, common acute lymphocytic leukemia antigen, CALLA, membrane metallo-endopeptidase, MME, enkefalilase) is a 100-kDa cell surface zinc metalloprotease cleaving peptide bonds on the N-terminus of hydrophobic amino acids and inactivating multiple physiologically active peptids. CD10 is expressed on various normal cell types, including lymphoid precursor cells, germinal center B lymphocytes, and some epithelial cells, and its expression level serves as a marker for diagnostics of many carcinomas. CD10 is also a differentiation antigen for early B-lymphoid progenitors in the B-cell differentiation pathway and has a key role in regulation of growth, differentiation and signal transduction of many cellular systems.

For laboratory research only, not for drug, diagnostic or other use.
References:


*Leukocyte Typing IV., Knapp W. et al. (Eds.), Oxford University Press (1989).
